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PREFACE

This book gives an introduction into mathematical statistics. It was written for
bachelor students in (business) mathematics, econometrics, or any other subject
with a solid mathematical component. We assume that the student already has solid
knowledge of probability theory to the extent of a semester course at the same level.

In Chapter 1, we give the definition and several examples of a statistical model,
the foundation of every statistical procedure. Some techniques from descriptive
statistics that can assist in setting up and validating statistical models are discussed
in Chapter 2. The following chapters discuss the three main topics in mathematical
statistics: estimating, testing, and constructing confidence regions. These subjects are
discussed in Chapters 3, 4, and 5, respectively. Next, Chapter 6 provides deeper
theoretical insight, in particular into the question under what circumstances and in
what sense certain statistical models are mathematically optimal. In Chapter 7, we
describe several regression models that are commonly used in practice. The theory
from the previous chapters is applied to estimate and test unknown model parameters
and give confidence regions for them. Finally, in Chapter 8, we discuss model
selection. In that chapter, various criteria are presented that can be used to find the
best-fitting model from a collection of (regression) models. Sections and examples
marked with a * are more difficult and do not belong to the basic subject matter of
mathematical statistics. Every chapter concludes with a summary.

In Appendix A, we recall elements from probability theory that are relevant
for understanding the subject matter of this book. In Appendix B, we discuss
properties of the multivariate normal distribution, which is used in several sections.
Appendix C contains tables with values of distribution and quantile functions of
several distributions to which we refer in the text. These are meant to be used at home
or during problem sessions. In “real life,” these tables are no longer used: the computer
is faster, more accurate, and easier to use. The statistical package R, for example,
contains standard functions for the distribution function, the density function, and the
quantile function of all standard distributions.

The mathematical style of this book is more informal than that of many
mathematics books. Theorems and lemmas are not always proved or may be
formulated in an informal manner. The reason is that a pure mathematical treatment is
only possible using measure theory, of which we do not assume any knowledge. On
the other hand, the relevance and motivation of the theorems are also clear without
going into all the details.

Each chapter concludes with a case study. It often contains a statistical problem
that is answered as well as possible based on the collected data, using the statistical
techniques and methods available at that point in the book. The R-code and data of
these applications, as well as the data of several case studies described in the book, are
available and can be downloaded from the book’s webpage at http://www.aup.nl.

Though this book includes examples, practice is indispensable to gain insight into
the subject matter. The exercises at the end of each chapter include both theoretical
and more practically oriented problems. Appendix D contains short answers to most
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translation.

Amsterdam and Leiden, March 2017

vi



TABLE OF CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1. What Is Statistics? . . . . . . . . . . . . . . . . . . . . . 1
1.2. Statistical Models . . . . . . . . . . . . . . . . . . . . . 2

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 12
Application: Cox Regression . . . . . . . . . . . . . . . . . 15

2. Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . 21
2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2. Univariate Samples . . . . . . . . . . . . . . . . . . . . . 21
2.3. Correlation . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . 38

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 39
Application: Benford’s Law . . . . . . . . . . . . . . . . . 41

3. Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2. Mean Square Error . . . . . . . . . . . . . . . . . . . . . 46
3.3. Maximum Likelihood Estimators . . . . . . . . . . . . . . . 54
3.4. Method of Moments Estimators . . . . . . . . . . . . . . . . 72
3.5. Bayes Estimators . . . . . . . . . . . . . . . . . . . . . . 75
3.6. M-Estimators . . . . . . . . . . . . . . . . . . . . . . . 88
3.7. Summary . . . . . . . . . . . . . . . . . . . . . . . . . 93

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 94
Application: Twin Studies . . . . . . . . . . . . . . . . . 100

4. Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . 105
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . 105
4.2. Null Hypothesis and Alternative Hypothesis . . . . . . . . . . 105
4.3. Sample Size and Critical Region . . . . . . . . . . . . . . 107
4.4. Testing with p-Values . . . . . . . . . . . . . . . . . . . 121
4.5. Statistical Significance . . . . . . . . . . . . . . . . . . 126
4.6. Some Standard Tests . . . . . . . . . . . . . . . . . . . 127
4.7. Likelihood Ratio Tests . . . . . . . . . . . . . . . . . . 143
4.8. Score and Wald Tests . . . . . . . . . . . . . . . . . . . 150
4.9. Multiple Testing . . . . . . . . . . . . . . . . . . . . . 153

4.10. Summary . . . . . . . . . . . . . . . . . . . . . . . . 159
Exercises . . . . . . . . . . . . . . . . . . . . . . . . 160
Application: Shares According to Black–Scholes . . . . . . . . 169

5. Confidence Regions . . . . . . . . . . . . . . . . . . . . . 174
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . 174
5.2. Interpretation of a Confidence Region . . . . . . . . . . . . 174
5.3. Pivots and Near-Pivots . . . . . . . . . . . . . . . . . . 177
5.4. Maximum Likelihood Estimators as Near-Pivots . . . . . . . . 181
5.5. Confidence Regions and Tests . . . . . . . . . . . . . . . 195
5.6. Likelihood Ratio Regions . . . . . . . . . . . . . . . . . 198

ix



B.2. Covariance Matrices . . . . . . . . . . . . . . . . . . . 347
B.3. Definition and Basic Properties . . . . . . . . . . . . . . . 348
B.4. Conditional Distributions . . . . . . . . . . . . . . . . . 352
B.5. Multivariate Central Limit Theorem . . . . . . . . . . . . . 353
B.6. Derived Distributions . . . . . . . . . . . . . . . . . . . 353

C. Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
C.1. Normal Distribution . . . . . . . . . . . . . . . . . . . 356
C.2. t-Distribution . . . . . . . . . . . . . . . . . . . . . . 357
C.3. Chi-Square Distribution . . . . . . . . . . . . . . . . . . 358
C.4. Binomial Distribution (n = 10) . . . . . . . . . . . . . . . 360

D. Answers to Exercises . . . . . . . . . . . . . . . . . . . . . 362
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

xi

5.7. Bayesian Confidence Regions . . . . . . . . . . . . . . . . 201
5.8. Summary . . . . . . . . . . . . . . . . . . . . . . . . 205

Exercises . . . . . . . . . . . . . . . . . . . . . . . . 206
Application: The Salk Vaccine . . . . . . . . . . . . . . . 209

6. Optimality Theory . . . . . . . . . . . . . . . . . . . . . . 212
6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . 212
6.2. Sufficient Statistics . . . . . . . . . . . . . . . . . . . . 212
6.3. Estimation Theory . . . . . . . . . . . . . . . . . . . . 219
6.4. Testing Theory . . . . . . . . . . . . . . . . . . . . . 231
6.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . 245

Exercises . . . . . . . . . . . . . . . . . . . . . . . . 246
Application: High Water in Limburg . . . . . . . . . . . . . 250

7. Regression Models . . . . . . . . . . . . . . . . . . . . . . 259
7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . 259
7.2. Linear Regression . . . . . . . . . . . . . . . . . . . . 261
7.3. Analysis of Variance . . . . . . . . . . . . . . . . . . . 275
7.4. Nonlinear and Nonparametric Regression . . . . . . . . . . . 283
7.5. Classification . . . . . . . . . . . . . . . . . . . . . . 285
7.6. Cox Regression Model . . . . . . . . . . . . . . . . . . 290
7.7. Mixed Models . . . . . . . . . . . . . . . . . . . . . . 295
7.8. Summary . . . . . . . . . . . . . . . . . . . . . . . . 299

Exercises . . . . . . . . . . . . . . . . . . . . . . . . 300
Application: Regression Models and Causality . . . . . . . . . 303

8. Model Selection . . . . . . . . . . . . . . . . . . . . . . . 308
8.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . 308
8.2. Goal of Model Selection . . . . . . . . . . . . . . . . . . 308
8.3. Test Methods . . . . . . . . . . . . . . . . . . . . . . 311
8.4. Penalty Methods . . . . . . . . . . . . . . . . . . . . . 312
8.5. Bayesian Model Selection . . . . . . . . . . . . . . . . . 317
8.6. Cross-Validation . . . . . . . . . . . . . . . . . . . . . 321
8.7. Post-Model Selection Analysis . . . . . . . . . . . . . . . 322
8.8. Summary . . . . . . . . . . . . . . . . . . . . . . . . 324

Application: Air Pollution . . . . . . . . . . . . . . . . . 325
A. Probability Theory . . . . . . . . . . . . . . . . . . . . . . 329

A.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . 329
A.2. Distributions . . . . . . . . . . . . . . . . . . . . . . 329
A.3. Expectation and Variance . . . . . . . . . . . . . . . . . 332
A.4. Standard Distributions . . . . . . . . . . . . . . . . . . 333
A.5. Multivariate and Marginal Distributions . . . . . . . . . . . . 338
A.6. Independence and Conditioning . . . . . . . . . . . . . . . 339
A.7. Limit Theorems and the Normal Approximation . . . . . . . . 342

Exercises . . . . . . . . . . . . . . . . . . . . . . . . 345
B. Multivariate Normal Distribution . . . . . . . . . . . . . . . . 347

B.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . 347

x



B.2. Covariance Matrices . . . . . . . . . . . . . . . . . . . 347
B.3. Definition and Basic Properties . . . . . . . . . . . . . . . 348
B.4. Conditional Distributions . . . . . . . . . . . . . . . . . 352
B.5. Multivariate Central Limit Theorem . . . . . . . . . . . . . 353
B.6. Derived Distributions . . . . . . . . . . . . . . . . . . . 353

C. Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
C.1. Normal Distribution . . . . . . . . . . . . . . . . . . . 356
C.2. t-Distribution . . . . . . . . . . . . . . . . . . . . . . 357
C.3. Chi-Square Distribution . . . . . . . . . . . . . . . . . . 358
C.4. Binomial Distribution (n = 10) . . . . . . . . . . . . . . . 360

D. Answers to Exercises . . . . . . . . . . . . . . . . . . . . . 362
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

xi

5.7. Bayesian Confidence Regions . . . . . . . . . . . . . . . . 201
5.8. Summary . . . . . . . . . . . . . . . . . . . . . . . . 205

Exercises . . . . . . . . . . . . . . . . . . . . . . . . 206
Application: The Salk Vaccine . . . . . . . . . . . . . . . 209

6. Optimality Theory . . . . . . . . . . . . . . . . . . . . . . 212
6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . 212
6.2. Sufficient Statistics . . . . . . . . . . . . . . . . . . . . 212
6.3. Estimation Theory . . . . . . . . . . . . . . . . . . . . 219
6.4. Testing Theory . . . . . . . . . . . . . . . . . . . . . 231
6.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . 245

Exercises . . . . . . . . . . . . . . . . . . . . . . . . 246
Application: High Water in Limburg . . . . . . . . . . . . . 250

7. Regression Models . . . . . . . . . . . . . . . . . . . . . . 259
7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . 259
7.2. Linear Regression . . . . . . . . . . . . . . . . . . . . 261
7.3. Analysis of Variance . . . . . . . . . . . . . . . . . . . 275
7.4. Nonlinear and Nonparametric Regression . . . . . . . . . . . 283
7.5. Classification . . . . . . . . . . . . . . . . . . . . . . 285
7.6. Cox Regression Model . . . . . . . . . . . . . . . . . . 290
7.7. Mixed Models . . . . . . . . . . . . . . . . . . . . . . 295
7.8. Summary . . . . . . . . . . . . . . . . . . . . . . . . 299

Exercises . . . . . . . . . . . . . . . . . . . . . . . . 300
Application: Regression Models and Causality . . . . . . . . . 303

8. Model Selection . . . . . . . . . . . . . . . . . . . . . . . 308
8.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . 308
8.2. Goal of Model Selection . . . . . . . . . . . . . . . . . . 308
8.3. Test Methods . . . . . . . . . . . . . . . . . . . . . . 311
8.4. Penalty Methods . . . . . . . . . . . . . . . . . . . . . 312
8.5. Bayesian Model Selection . . . . . . . . . . . . . . . . . 317
8.6. Cross-Validation . . . . . . . . . . . . . . . . . . . . . 321
8.7. Post-Model Selection Analysis . . . . . . . . . . . . . . . 322
8.8. Summary . . . . . . . . . . . . . . . . . . . . . . . . 324

Application: Air Pollution . . . . . . . . . . . . . . . . . 325
A. Probability Theory . . . . . . . . . . . . . . . . . . . . . . 329

A.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . 329
A.2. Distributions . . . . . . . . . . . . . . . . . . . . . . 329
A.3. Expectation and Variance . . . . . . . . . . . . . . . . . 332
A.4. Standard Distributions . . . . . . . . . . . . . . . . . . 333
A.5. Multivariate and Marginal Distributions . . . . . . . . . . . . 338
A.6. Independence and Conditioning . . . . . . . . . . . . . . . 339
A.7. Limit Theorems and the Normal Approximation . . . . . . . . 342

Exercises . . . . . . . . . . . . . . . . . . . . . . . . 345
B. Multivariate Normal Distribution . . . . . . . . . . . . . . . . 347

B.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . 347

x



1 Introduction

1.1 What Is Statistics?

Statistics is the art of modeling (describing mathematically) situations in which
probability plays a role and drawing conclusions based on data observed in such
situations.

Here are some typical research questions that can be answered using statistics:
(i) What is the probability that the river the Meuse will overflow its banks this year?

(ii) Is the new medical treatment significantly better than the old one?
(iii) What is the margin of uncertainty in the prediction of the number of representa-

tives for political party A?
Answering such questions is not easy. The three questions above correspond to the
three basic concepts in mathematical statistics: estimation, testing, and confidence
regions, which we will deal with extensively in this book. Mathematical statistics
develops and studies methods for analyzing observations based on probability models,
with the aim to answer research questions as above. We discuss a few more
examples of research questions, observed data, and corresponding statistical models
in Section 1.2.

In contrast to mathematical statistics, descriptive statistics is concerned with
summarizing data in an insightful manner by averaging, tabulating, making graphical
representations, and processing them in other ways. Descriptive methods are only
discussed briefly in this book, as are methods for collecting data and the modeling
of data.

1



1.2: Statistical Models

for i = 1, . . ., n. There is no prior knowledge concerning the parameter p, other then
0 ≤ p ≤ 1. The observation is the vector X = (X1, . . . , Xn). The statistical model
for X consists of all possible (joint) probability distributions of X whose coordinates
X1, . . . , Xn are independent and have a Bernoulli distribution. For every possible
value of p, the statistical model contains exactly one probability distribution for X .

It seems natural to “estimate” the unknown p by the proportion of the persons
with property A, that is, by n−1

∑n
i=1xi, where xi is equal to 1 or 0 according to

whether the person has property A or not. In Chapter 3, we give a more precise
definition of “estimating.” In Chapter 5, we use the model we just described to
quantify the difference between this estimator and p, using a “confidence region.” The
population and sample proportions will almost never be exactly equal. A confidence
region gives a precise meaning to the “margin of errors” that is often mentioned with
the results of an opinion poll. We will also determine how large that margin is when
we, for example, study 1000 persons from a population, a common number in polls
under the Dutch population.

Example 1.3 Measurement errors

If a physicist uses an experiment to determine the value of a constant μ repeatedly, he
will not always find the same value. See, for example, Figure 1.1, which shows the
23 determinations of the speed of light by Michelson in 1882. The question is how
to “estimate” the unknown constant μ from the observations, a sequence of numbers
x1, . . . , xn. For the observations in Figure 1.1, this estimate will lie in the range 700–
900, but we do not know where. A statistical model provides support for answering
this question. Probability models were first applied in this context at the end of the
18th century, and the normal distribution was “discovered” by Gauss around 1810 for
the exact purpose of obtaining insight into the situation described here.
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Figure 1.1. The results of the 23 measurements of the speed of light by Michelson in 1882.The
scale along the horizontal axis gives the measured speed of light (in km/s) minus 299000 km/s.
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1: Introduction

1.2 Statistical Models

In a sense, the direction of statistics is precisely the opposite of that of probability
theory. In probability theory, we use a given probability distribution to compute the
probabilities of certain events. In contrast, in statistics, we observe the results of
an experiment, but the underlying probability distribution is (partly) unknown and
must be derived from the results. Of course, the experimental situation is not entirely
unknown. All known information is used to construct the best possible statistical
model. A formal definition of a “statistical model” is as follows.

Definition 1.1 Statistical model

A statistical model is a collection of probability distribution on a given sample space.

The interpretation of a statistical model is: the collection of all possible
probability distributions of the observation X . Usually, this observation is made up
of “subobservations,” and X = (X1, . . . , Xn) is a random vector. When the variables
X1, . . . , Xn correspond to independent replicates of the same experiment, we speak
of a sample. The variables X1, . . ., Xn are then independent, identically distributed,
and their joint distribution is entirely determined by the marginal distribution, which
is the same for all Xi. In that case, the statistical model for X = (X1, . . ., Xn) can be
described by a collection of (marginal) probability densities for the subobservations
X1, . . . , Xn.

The concept of “statistical model” only truly becomes clear through examples. As
simply as the mathematical notion of “statistical model” is expressed in the definition
above, so complicated is the process of the statistical modeling of a given practical
situation. The result of a statistical study depends on the construction of a good model.

Example 1.2 Sample

In a large population consisting of N persons, a proportion p has a certain
characteristic A; we want to “estimate” this proportion p. It is too much work to
examine everyone in the population for characteristic A. Instead, we randomly choose
n persons from the population, with replacement. We observe (a realization of) the
random variables X1, . . ., Xn, where

Xi =

{
0 if the ith person does not have A,
1 if the ith person has A.

Because of the set-up of the experiment (sampling with replacement), we know
beforehand that X1, . . . , Xn are independent and Bernoulli-distributed. The latter
means that

P(Xi = 1) = 1− P(Xi = 0) = p
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for i = 1, . . ., n. There is no prior knowledge concerning the parameter p, other then
0 ≤ p ≤ 1. The observation is the vector X = (X1, . . . , Xn). The statistical model
for X consists of all possible (joint) probability distributions of X whose coordinates
X1, . . . , Xn are independent and have a Bernoulli distribution. For every possible
value of p, the statistical model contains exactly one probability distribution for X .

It seems natural to “estimate” the unknown p by the proportion of the persons
with property A, that is, by n−1

∑n
i=1xi, where xi is equal to 1 or 0 according to

whether the person has property A or not. In Chapter 3, we give a more precise
definition of “estimating.” In Chapter 5, we use the model we just described to
quantify the difference between this estimator and p, using a “confidence region.” The
population and sample proportions will almost never be exactly equal. A confidence
region gives a precise meaning to the “margin of errors” that is often mentioned with
the results of an opinion poll. We will also determine how large that margin is when
we, for example, study 1000 persons from a population, a common number in polls
under the Dutch population.
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this question. Probability models were first applied in this context at the end of the
18th century, and the normal distribution was “discovered” by Gauss around 1810 for
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Figure 1.2. Cumulative averages (vertical axis) of n = 1, 2, . . . , 1000 (horizontal axis) realizations
from the standard Cauchy distribution.

registers the total number of items sold per week and retailer for several weeks. They
observe x = (x1,1, x1,2, . . . , xI,J ), where xi,j is the number of items sold by retailer i
in week j. The observation is therefore a vector of length the product IJ of the number
of retailers and the number of weeks, with integral coordinates. The observations can
be seen as realizations of the random vector X = (X1,1, X1,2, . . . , XI,J). Many
different statistical models for X are possible and meaningful in given situations. A
common (because often reasonably fitting) model states:

- Every Xi,j is Poisson-distributed with unknown parameter μi,j .
- The X1,1, . . ., XI,J are independent.

This fixes the probability distribution of X up to the expectations μi,j = EXi,j . It
is these expectations that the distribution center is interested in. The total expected
demand in week j, for example, is

∑
i μi,j . Using the Poisson-character of the demand∑

i Xi,j , the distribution center can choose a stock size that gives a certain (high)
probability that there is sufficient stock.

The goal of the statistical analysis is to deduce μi,j from the data. Up to now, we
have left the μi,j completely “free.” This makes it difficult to estimate them from the
data, because only one observation,xi,j , is available for each μi,j . It seems reasonable
to reduce the statistical model by including prior assumptions on μi,j . We could, for
example, postulate that μi,j = μi does not depend on j. The expected number of
items sold then depends on the retailer but is constant over time. We are then left
with I unknowns, which can be “estimated” reasonable well from the data provided
that the number of weeks J is sufficiently large. More flexible, alternative models are
μi,j = μi+βij and μi,j = μi+βμij, with, respectively, 2I and I+1 parameters. Both
models correspond to a linear dependence of the expected demand on time.

Example 1.5 Regression

Tall parents in general have tall children, and short parents, short children. The heights
of the parents have a high predictive value for the final (adult) length of their children,
their heights once they stop growing. More factors influence it. The gender of the
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If the measurements are all carried out under the same circumstances, indepen-
dently of the past, then it is reasonable to include in the model that these numbers
are realizations of independent, identically distributed random variables X1, . . . , Xn.
The measurement errors ei = Xi − μ are then also random variables. A common
assumption is that the expected measurement error is equal to 0, in other words, Eei =
0, in which case EXi = E(ei + μ) = μ. Since we have assumed that X1, . . . , Xn

are independent random variables and all have the same probability distribution, the
model for X = (X1, . . . , Xn) is fixed by the choice of a statistical model for Xi.
For Xi, we propose the following model: all probability distributions with finite
expectation μ. The statistical model for X is then: all possible probability distributions
of X = (X1, . . . , Xn) such that the coordinates X1, . . . , Xn are independent and
identically distributed with expectation μ.

Physicists often believe that they have more prior information and make more
assumptions on the model. For example, they assume that the measurement errors
are normally distributed with expectation 0 and variance σ2, in other words, that the
observationsX1, . . . , Xn are normally distributed with expectationμ and variance σ2.
The statistical model is then: all probability distributions of X = (X1, . . . , Xn) such
that the coordinates are independent and N(μ, σ2)-distributed.

The final goal is to say something about μ. In the second model, we know more,
so we should be able to say something about μ with more “certainty.” On the other
hand, there is a higher “probability” that the second model is incorrect, in which case
the gain in certainty is an illusory one. In practice, measurement errors are often, but
not always, approximately normally distributed. Such normality can be justified using
the central limit theorem (see Theorem A.28) if a measurement error can be viewed
as the sum of a large number of small independent measurement errors (with finite
variances), but cannot be proved theoretically. In Chapter 2, we discuss methods to
study normality on the data itself.

The importance of a precisely described model is, among other things, that
it allows us to determine what is a meaningful way to “estimate” μ from the
observations. An obvious choice is to take the average of x1, . . . , xn. In Chapter 6,
we will see that this is the best choice (according to a particular criterion) if the
measurement errors indeed have a normal distribution with expectation 0. If, on the
other hand, the measurement errors are Cauchy-distributed, then taking the average
is disastrous. This can be seen in Figure 1.2. It shows the average n−1

∑n
i=1xi, for

n = 1, 2, . . . , 1000, of the first n realizations x1, . . . , x1000 of a sample from a
standard Cauchy distribution. The behavior of the averages is very chaotic, and they
do not converge to 0. This can be explained by the remarkable theoretic result that the
average n−1

∑n
i=1Xi of independent standard Cauchy-distributed random variables

X1, . . . , Xn also has a standard Cauchy distribution. So taking the averages changes
nothing!

Example 1.4 Poisson stocks

A certain product is sold in numbers that vary for different retailers and fluctuate over
time. To estimate the total number of items needed, the central distribution center
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Figure 1.2. Cumulative averages (vertical axis) of n = 1, 2, . . . , 1000 (horizontal axis) realizations
from the standard Cauchy distribution.
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previous generation and half the average height difference between men and women.
These parameters are estimated using the least-squares method (see Example 3.44).
The parameter β0 is estimated to be 4.5 centimeters, and β3 is estimated to be 6.5
centimeters.† The estimated regression model is then equal to

(1.1) Y = 4.5 +
1

2
(x1 + x2) + 6.5x3 + e.

Figure 1.3 shows the heights of 44 young men (on the left) and 67 young women
(on the right) set out against the average heights of their parents.‡ The line is the
estimated regression line found in the Fourth National Growth Study.
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Figure 1.3. Heights (in cm) of sons (left) and daughters (right) set out against the average height
of their parents. The line is the regression line found in the Fourth National Growth Study.

We can use the estimated regression model found in the Fourth National Growth
Study to predict the final heights of children born now. We must then assume that the
height increase in the next generation is again 4.5 centimeters and that the average
height difference between men and women remains 13 centimeters. Based on the
model presented above, the target heights of sons and daughters of a man of height 180
cm (≈ 71 in or 5’9”) and a woman of height 172 cm are 4.5+ (180+172)/2+6.5 =
187 cm and 4.5 + (180 + 172)/2− 6.5 = 174 cm, respectively.

Other European countries use other models. In Switzerland, for example, the
target height is

EY = 51.1 + 0.718
x1 + x2

2
+ 6.5x3.

† An inch is approximately 2.54 cm, so 4.5 cm corresponds to 4.5/2.54 ≈ 1.8 in and 6.5 cm
≈ 2.6 in.

‡ Source: The data were gathered by the department of Biological Psychology of VU University
Amsterdam during a study on health, lifestyle, and personality. The data can be found on the book’s
webpage at http://www.aup.nl under heightdata.
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child, of course, plays an important role. Environmental factors such as healthy eating
habits and hygiene are also important. Through improved nutrition and increased
hygiene in the past 150 years, factors that hinder growth like infectious diseases and
malnutrition have decreased in most Western countries. Consequently, the average
height has increased, and each generation of children is taller.

The target height of a child is the height that can be expected based on the heights
of the parents, the gender of the child, and the increase of height over generations. The
question is how the target height depends on these factors.

Let Y be the height a child will reach, let x1 and x2 be the heights of the
biological father and mother, respectively, and let x3 be an indicator for the gender
(x3 = −1 for a girl and x3 = 1 for a boy). The target height EY is modeled using a
so-called linear regression model

EY = β0 + β1x1 + β2x2 + β3x3,

where β0 is the increase in average height per generation, β1 and β2 are the extent to
which the heights of the parents influence the target height of their offspring, and β3

is the deviation of the target height from the average final height that is caused by the
gender of the child. Since men are, on average, taller than women, β3 will be positive.

The model described above does not say anything about individual heights, only
about the heights of the offspring of parents of a certain height. Two brothers have the
same target height, since they have the same biological parents, the same gender, and
belong to the same generation. The actual final height Y can be described as

Y = β0 + β1x1 + β2x2 + β3x3 + e,

where e = Y −EY is the deviation of the actual final height Y from the target height
EY . The observation Y is also called the dependent variable, and the variables x1, x2,
and x3 the independent or predictor variables. The deviation e is commonly assumed
to have a normal distribution with expectation 0 and unknown variance σ2. The final
height Y then has a normal distribution with expectation β0 + β1x1 + β2x2 + β3x3

and variance σ2.
In the Netherlands, the increase in the height of youth is periodically recorded.

In 1997, the Fourth National Growth Study took place. Part of the study was to
determine the correlation between the final height of the children and the heights
of their parents. To determine this correlation, data were collected on adolescents
and their parents. This resulted in the following observations: (y1, x1,1, x1,2, x1,3),
. . . , (yn, xn,1, xn,2, xn,3), where yi is the height of the ith adolescent, xi,1 and xi,2

are the heights of the biological parents, and xi,3 is an indicator for the gender of
the ith adolescent. Suppose that the observations are independent replicates of linear
regression model given above; in other words, given xi,1, xi,2, and xi,3, the variable
Yi has expectation β0 + β1xi,1 + β2xi,2 + β3xi,3 and variance σ2. The parameters
(β0, β1, β2, β3) are unknown and can be estimated from the observations. For a simple
interpretation of the model, we choose β1 = β2 = 1/2, so that the target height is
equal to the average height of the parents corrected for the gender of the child and the
influence of time. The parameters β0 and β3 are equal to the increase in height in the
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Since the maximal water flows x1, . . ., x70 were measured in (mostly) different
years, and the water level of the Meuse depends mainly on the weather in the Ardennes
and further upstream, it is not unreasonable to view these numbers as realizations
of independent random variables X1, . . ., X70. The assumption that these parameters
are also identically distributed is somewhat questionable because the course of the
Meuse (and also the climate) has gradually changed during of the last century, but this
assumption is usually made anyway. We can then view X1, . . ., X70 as independent
copies of one variable X and use the measured values x1, . . ., x70 to answer the
question.

Let E be the event that flooding takes place in an (arbitrary) year. The probability
of event E is approximately equal to the expected number EN of extreme periods
in a year, times the probability that there is a flood in an extreme period, that is,
P(E) ≈ EN P(X > h) for X a maximal water flow in a period of extreme water
flow, h the maximal water flow so that there is no flood, and N the number of times we
have extremely high water levels in an arbitrary year. For this computation, we use that
the probability of flooding in an extreme period P(X > h) is small. The probability
distribution of N is unknown, but it is reasonable to assume that the expectation of
N is approximately equal to the average number of periods of extreme water flow per
year in the past 90 years, so EN ≈ 70/90. The question is now: for which number h
do we have P(X > h) = 1/10000 · 90/70 = 0.00013?
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Figure 1.4. Maximal water flows in m3/s (vertical axis) in the Meuse near Borgharen in the 20th
century in chronological order (horizontal axis).

This question cannot easily be answered. If the observed maxima for a period of
100 000 years (or more) were available, then we could determine h with a reasonable
accuracy, for example as the value of the 10%th highest measured water level (10% =
10 000/100 000). Unfortunately, we dispose over only 70 observations, and must
therefore extrapolate far into the future to a (probably) much more extreme situation
than ever measured. If we can determine a good model for the distribution of X , then
this is not a problem. If we, for example, knew that X has the standard exponential
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The target heights of sons and daughters of parents of the same heights as above are
now 184 and 171 centimeters, respectively.

In the example above, there is a linear correlation between the response Y and the
unknown parameters β0, . . ., β3. In that case, we speak of a linear regression model.
The simplest linear regression model is that where there is only one predictor variable:

Y = β0 + β1x+ e;

this is called a simple linear regression model (in contrast to the multiple linear
regression model when there are more predictor variables).

In general, we speak of a regression model when there is a specific correlation
between the response Y and the observations x1, . . ., xp:

Y = fθ(x1, . . ., xp) + e,

where fθ describes the correlation between the observations x1, . . ., xp and the
response Y , and the random variable e is an unobservable measurement error with
expectation 0 and variance σ2. If the function fθ is known up to the finite-dimensional
parameter θ, we speak of a parameterized model. The linear regression model
is an example of this; in this model, we have θ = (β0, . . ., βp) ∈ Rp+1 and
fθ(x1, . . ., xp) = β0 + β1x1 + . . . + βpxp. The regression model is then fixed if
we know the values of θ and σ2. The function fθ can, however, also be known up to
the finite-dimensional parameter θ and an infinite-dimensional parameter. We then
speak of a semiparametric model. An example of a semiparametric model is the
Cox regression model. This model is described at the end of this chapter, after the
exercises. In Chapter 7, we discuss several regression models in detail, including the
linear regression model and the Cox regression model.

Example 1.6 Water levels

In the 20th century (between 1910 and 2000), extreme water levels were measured
70 times in the river the Meuse near the town of Borgharen (Netherlands). Here,
“extreme” is defined by Rijkswaterstaat (the Dutch government agency responsible
for the management of waterways) as “more than 1250 m3/s.” The maximal water
flows during those 70 periods are shown in chronological order in Figure 1.4.� The
problem is predicting the future. Rijkswaterstaat is particularly interested in how high
the dikes must be to experience flooding at most once every 10 000 years. We can use
a hydraulic model to compute the height of the water from the water flow.

� The data can be found on the book’s webpage at http://www.aup.nl under maxflows and
flows1965.
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1.2: Statistical Models

Long life spans are more frequently censored than short ones because the
probability that the patient dies is greater during a long period of time than during
a short one (and the same holds for the study ending). It would therefore be wrong to
ignore censored data and estimate the distribution function F based on the uncensored
data. This would lead to an overestimate of the distribution function of the life span
and an underestimate of the expected life span because relatively longer life spans
would be ignored. A correct approach is to use a statistical model for all observations,
both censored and uncensored.

The statistical model becomes even more complex if we suspect that there are
factors that could influence the life span of the heart valve, for example the age,
weight, or gender of the patient. In such a case, the life span can be modeled using, for
example, the Cox regression model. This model is studied at the end of this chapter
(after the exercises) and in Chapter 7.

Example 1.8 Selection bias

To correctly answer a research question, it is important that this question, the collected
data, and the statistical model are correctly aligned. This is illustrated below.

The Dutch Railways (Nederlandse Spoorwegen or NS for short) regularly receive
complaints about crowding in the trains during rush hour. A study is set up to
investigate whether these complaints are justified. There are two research questions.
The first is what percentage of the passengers does not have a seat during rush
hour. The second is what percentage of rush hour trains is too crowded. Note that
these are two fundamentally different questions. The first question concerns people,
a percentage of passengers, while the second question concerns trains. A passenger
is probably only interested in the first research question, while the NS also attach
importance to the answer of the second. They have to identify on which trains there
are problems, and where measures must be taken.

To answer the first research question, a sample of size 50 is taken from train
passengers that have just got off. Each person is asked whether they could sit. We
observe the sequence x1, . . . , x50, where xi equals 1 if the ith person did not have
a seat and xi is equal to 0 if the ith person did have a seat. Then x1, . . ., x50

are realizations of independent random variables X1, . . ., X50 with a Bernoulli
distribution with parameter p, where p = P(Xi = 1) is the proportion of passengers
that could not be seated. As in Example 1.2, we can estimate the proportion p using
the sample mean 50−1

∑50
i=1 xi. This is a correct way to answer the research question.

Answering the second research question is more difficult, because it concerns
trains and not persons. To carry out this study, during rush hour, 50 head conductors
are randomly chosen and asked whether the train they were just on was overcrowded.
We observe the sequence y1, . . . , y50, where yi is equal to 1 if the ith head conductor
indicates that the train was overcrowded and yi is equal to 0 if this was not the case.
We can again view y1, . . . , y50 as realizations of Y1, . . . , Y50, which are independent
Bernoulli variables with probability q = P(Yi = 1). If we assume that there is only
one head conductor on each train, the probability q equals the proportion of rush hour
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distribution, then we could determine h from the equation 0.00013 = P(X > h) =
e−h. This is not, however, a realistic assumption.

An alternative is given by fitting an extreme value distribution to the data.
These are probability distributions that are commonly used for modeling variables
X that can be viewed as a maximum X = max(Y1, . . ., Ym) of a large number of
independent variables Y1, . . ., Ym. Given the interpretation of X as a maximal water
flow in a period, such distributions seem reasonable. Of the three types of extreme
value distributions, one type proves to fit the data reasonably well. This is the Fréchet
family, where the distribution function is given by

F (x) =

{
e−((x−a)/b)−α

if x ≥ a,
0 if x < a.

The Fréchet family has three parameters: a ∈ R, b > 0, and α > 0. If we are
convinced of the usefulness of the resulting model, we can estimate these parameters
from the 70 data points and then answer the question through a simple computation.
In Chapter 3, we discuss suitable estimation methods and in the application after
Chapter 6, we further work out the data of the water flows.

Example 1.7 Survival analysis

In survival analysis, we study the probability distribution of time spans. You can think
of the life span of a light bulb, but also of the time before the next bug occurs in a
computer program (“reliability analysis”) and, in particular, of the remaining time
until death or until the occurrence of a disease in medical statistics. Below is an
example.

In persons with a leaking heart valve, the heart valve is often replaced by
a biological or mechanical heart valve. A disadvantage of the biological over the
mechanical heart valve is the relatively short life span (10 to 15 years). To study
the distribution function F of the life span of a biological heart valve, n persons
with such a valve are followed from the operation up to the moment that the valve
must be replaced. At the end of the study, we have measured the life spans t1, . . . , tn
of all of the n heart valves. We view these numbers as realizations of independent
random variables T1, . . ., Tn with distribution function F . The probability F (t) that
a biological heart valve must be replaced within t years can be estimated by the
proportion of heart valves in the sample that is replaced within t years.

A special aspect of survival analysis is that, often, not all life spans are observed.
At the moment that we want to draw conclusions from the data, for example, not all
heart valves have needed replacement or a patient may have died with a heart valve
that was still good. In those cases, too, we only observe a lower bound for the life
spans, the time until the end of the study or until the death of the patient. We know
that the heart valve still worked when the study was ended or the patient died. We then
speak of censored data.
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1: Exercises

3. We want to estimate the number of fish, say N, in a pond. We proceed as follows. We catch r
fish and mark them. We then set them free. After some time, we catch n fish (without putting
them back). Of these, X are marked. Consider r and n as constants we choose ourselves, and
let X be the observation.

(i) Formulate a suitable statistical model.
(ii) Give an intuitively reasonable “estimate” of N based on the observation.

(iii) Answer the previous questions if, the second time we catch fish, they are put back
directly after catching them (sampling with replacement).

4. When assessing a batch of goods, we continue until 3 items are rejected.
(i) Formulate a suitable statistical model.

(ii) The third rejected item is the 50th we assess. Give an estimate of the percentage of
defect items in the batch. Justify your choice.

5. The number of customers in the post office seems to depend on the day of the week (weekday
or Saturday) and half-day (morning or afternoon). On workdays, the post office is open in the
morning and in the afternoon, and on Saturday, is it open only in the morning. To determine
how many employees are required to provide prompt service, the number of customers is
registered over a period of ten weeks. Every day, the number of customers in the post office
in the morning (on weekdays and Saturdays) and in the afternoon (on weekdays only) is
noted.

(i) Formulate a suitable statistical model.
(ii) Give an intuitively reasonable “estimate” of the number of clients on a Monday

afternoon. Justify your choice.
(iii) The biggest difference in numbers of customers is between the half-days during

the workweek (Monday through Friday, mornings and afternoons) and the Saturday
morning. It was therefore decided to only take into account this difference in the staff
planning. Reformulate the statistical model and give a new estimate.

6. The yearly demand for water in the African city of Masvingo is greater than the amount
that can be recovered from the precipitation in one year. Therefore, water is supplied from a
nearby lake according to the need. The amount of water that needs to be supplied per year
depends on the precipitation in that year and on the size of the population of Masvingo.
Moreover, rich people use more water than poor people. Describe a linear regression
model with “amount of water to be supplied” as dependent variable and “population
size,” “precipitation,” and “average income” as predictor variables. Indicate for each of the
parameters whether you expect them to be positive or negative.

7. A linear correlation is suspected between the income of a person and their age and level of
education (low, middle, high).

(i) Describe a linear regression model with “income” as dependent variable and “age” and
“education” as predictor variables. Think carefully about how to include the variable
“education” in the model.

(ii) We want to study whether the gender of a person has an influence on the income. Adapt
the linear regression model so that this can be studied.

8. We want to estimate the average length of wool fibers in a large bin. The bin is first shaken
well, after which we take a predefined number of fibers from the bin, one by one and with
closed eyes. We estimate the average length of the wool fibers in the bin to be the average
length of the wool fibers in the sample. Is the estimated length systematically too long,
systematically too short, or just right?
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trains that were overcrowded. We can see Y1, . . . , Y50 as a sample from the trains that
just pulled in. The proportion q can be estimated using the sample mean 50−1

∑50
i=1 yi.

It is simpler to also ask the sample of travelers we gathered to answer the first
research question whether the train they were in was overcrowded. In that case, we
observe a sequence of realization of the independent Bernoulli variables Z1, . . . , Z50

with r = P(Zi = 1). Here, Zi is defined analogously to Yi. Since a train carries more
than one passenger, not every train passenger will correspond to a unique train. Since
there are more persons in crowded trains than in quiet ones, the percentage “people
from crowded trains” in the population of train passengers will be much higher than
the percentage of “crowded trains” in the population of trains. In other words, r will
be greater than q. It is difficult to give a correlation between r and q without making
additional assumptions. That is why the second research question could not easily be
answered based on a sample from the passengers, while the first research question
could.

In most of the examples given above, the statistical model is parameterized by
a parameter, for example p, (μ, σ2), (β0, β1, β2, β3), or (a, b, α). Many statistical
models are known up to a parameter. In this book, we often denote that parameter
by θ (“theta”). The statistical model can then be denoted by {Pθ: θ ∈ Θ}, where
Pθ is the probability distribution of the observation X and Θ is the set of possible
parameters. There is a tacit assumption that exactly one of the parameter values (or
exactly one element of the model) gives the “true” distribution of X . The purpose of
statistics is to find that value. What makes statistics difficult, is that we never fully
succeed and that statements about the true parameter value always contain a certain
element of uncertainty (by definition).

Exercises
1. Suppose that n persons are chosen randomly from a population and asked their political

affiliation. Denote by X the number of persons from the sample whose affiliation is with
political party A. The proportion of individuals in the population affiliated with party A is
the unknown probability p. Describe a corresponding statistical model. Give an intuitively
reasonable “estimate” of p.

2. Suppose that m + n patients with high blood pressure are chosen randomly and divided
arbitrarily into two groups of sizes m and n. The first group, the “treatment group,” is
given a particular blood-pressure-lowering drug; the second group, the “control group,” is
given a placebo. The blood pressure of each patient is measured before and one week after
administering the drug or placebo, and the difference in blood pressure is determined. This
gives observations x1, . . ., xm and y1, . . ., yn.

(i) Formulate a suitable statistical model.
(ii) Give an intuitively reasonable “estimate” of the effect of the drug on the height of the

blood pressure, based on the observations (several answers are possible!).
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by θ (“theta”). The statistical model can then be denoted by {Pθ: θ ∈ Θ}, where
Pθ is the probability distribution of the observation X and Θ is the set of possible
parameters. There is a tacit assumption that exactly one of the parameter values (or
exactly one element of the model) gives the “true” distribution of X . The purpose of
statistics is to find that value. What makes statistics difficult, is that we never fully
succeed and that statements about the true parameter value always contain a certain
element of uncertainty (by definition).

Exercises
1. Suppose that n persons are chosen randomly from a population and asked their political

affiliation. Denote by X the number of persons from the sample whose affiliation is with
political party A. The proportion of individuals in the population affiliated with party A is
the unknown probability p. Describe a corresponding statistical model. Give an intuitively
reasonable “estimate” of p.

2. Suppose that m + n patients with high blood pressure are chosen randomly and divided
arbitrarily into two groups of sizes m and n. The first group, the “treatment group,” is
given a particular blood-pressure-lowering drug; the second group, the “control group,” is
given a placebo. The blood pressure of each patient is measured before and one week after
administering the drug or placebo, and the difference in blood pressure is determined. This
gives observations x1, . . ., xm and y1, . . ., yn.

(i) Formulate a suitable statistical model.
(ii) Give an intuitively reasonable “estimate” of the effect of the drug on the height of the

blood pressure, based on the observations (several answers are possible!).
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COX REGRESSION

In survival analysis, we are interested in the distribution function of the time span
before the occurrence of a particular event, for example, the time before dying after
a serious operation, the time before a certain device breaks down, or the time before
an ex-convict commits a new crime. Several factors can influence this distribution
function. For example, a young woman will presumably have a lower probability of
dying after a serious operation than an older woman, and, hopefully, more time will
pass before an ex-convict commits a new crime if he receives financial support than
if he does not. It is important to gain insight in how and how much these factors
influence the “life span,” so that we can determine a more person-specific risk and
take measures to reduce risks. If, for example, ex-convicts are more likely to commit
a new crime if they are in financial difficulty after returning to society, then financial
support or help in finding a job may help these people stay on the right track. In this
application, we will use a sample to delve more deeply into survival analysis.

Ex-convicts often fall back into their old habits and come back into contact with
police and justice. Suppose that we want to study the distribution function of the time
span between release and recidivism and whether financial support after release has
a positive effect on the time before an ex-convict comes back into contact with police.
To begin with, we assume that there are no other factors.

Suppose that 100 ex-convicts are followed during one year. We know of each of
them whether they commit a new crime within a year and if so, how many weeks after
their release. We want to use these data to research which percentage of ex-convicts
commit a new crime within t weeks (with t ∈ [0, 52]). We first set up a statistical model
for these data. Define Y t

i for i = 1, . . . , 100 as the indicator that tells us whether the
ith ex-convict has committed a new crime within t weeks; yti = 0 if they have not,
and yti = 1 if they have. Then Y t

1 , . . . , Y
t
100 are Bernoulli-distributed with unknown

parameter pt = P (Y t
i = 1), the probability of recidivism within t weeks. Under the

assumption that the variables Y t
1 , . . . , Y

t
100 are, moreover, independent, the statistical

model is fixed. We could “estimate” the probability pt using the fraction
∑100

i=1 y
t
i/100.

If the number of ex-convicts we follow, in our case 100, is large, then the proportion
we find in the sample will lie close to the actual proportion pt; this follows from the
law of large numbers.

Often, studies are set up in a different way. Instead of following all ex-convicts
for a year, we choose to restrict the length of the study to one year. We follow the
convicts released during that year until they commit a new crime (if they do) or until
the study ends. We have followed a total of 432 convicts in such a study. Figure 1.5
shows the observed time spans of 5 ex-convicts. Along the x-axis, the image on the
left has the time from the beginning of the study (the vertical line at time 0) until
the end of the study (the vertical line at week 52). The numbers along the y-axis are
the personal numbers of the ex-convicts. The first person was released 10 weeks after
the study began and arrested 31 weeks after the beginning. This person was free for
31 − 10 = 21 weeks. The second individual was released 27 weeks after the study
began and had not committed a new crime before the end of the study. We do not know
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1: Introduction

9. At a call center, we want to estimate how long a customer must wait before being helped.
For one day, we register how long each customer must wait. If the customer looses patience
and hangs up, their waiting time up to that moment is noted. Afterward, we calculate the
average waiting time by taking the average of the noted times. This average is used as an
estimate of the waiting time of a new customer. What do you think of this method?
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